Identification of PKC-regulated phosphosites on LRRK1 by mass spectrometry analysis

Asad Malik, Raja Sekhar Nirujogi, Toan K. Phung, Dario R. Alessi

Published: 2022-06-27 DOI: 10.17504/protocols.io.261gen89dg47/v1

Abstract

We describe a non-radioactive, mass spectrometry-based assay that we deploy for identifying novel PKC-regulated sites on LRRK1 that are responsible for activation of its kinase activity.

Attachments

Steps

Preparation of lipid vesicles for PKC activation

1.

Clean a disposable glass culture tube by washing three times with 100% methanol. Allow to air-dry.

2.

Pipette 0.5µL of Diacylglycerol (stock concentration is 10mg/mL) and 5µL of Phosphatidylserine (stock concentration is 10mg/mL) into the cleaned and dried glass tube.

Note
These quantities will provide sufficient lipid vesicles for 25 reactions at a volume of 20µL per reaction.

3.

Vacuum dry lipids using a SpeedVac system for 0h 10m 0s. This should leave a visible, translucent lipid pellet.

Note
Ensure that lipids are completely dried as any residual chloroform or methanol will inhibit the kinase reaction.

4.

Resuspend lipids from step 3 in 50µL of 25millimolar (mM) HEPES 7.4 , 50millimolar (mM) KCl. Vortex gently until pellet is no longer visible.

Kinase Reaction: Phosphorylation of LRRK1 by PKC

5.

Prepare a primary “2X master mix” containing 50millimolar (mM) HEPES 7.5, 100millimolar (mM) KCl, 0.2% (v/v) 2‐Mercaptoethanol, 20millimolar (mM) MgCl2, 2millimolar (mM) ATP, 2millimolar (mM) CaCl2, 200μg/ml Phosphatidylserine and 20μg/ml Diacylglycerol.

6.

For each reaction, add 15µL of the primary “2X master mix” to a clean Eppendorf tube.

7.

Add 7.5µL of 200nanomolar (nM) LRRK1 wild type protein (final concentration is 50nanomolar (nM)) to each reaction and allow equilibration On ice for 0h 5m 0s.

8.

Start the kinase reaction by adding 7.5µL of 400nanomolar (nM) PKC Alpha protein (final concentration is 100nanomolar (nM)).

Note
The final reaction volume should be 30µL.

Note
Reactions not including PKC Alpha are also included as a negative control to identify phosphorylation sites that are only present when recombinant LRRK1 protein is incubated with PKC Alpha. In these reactions, add 7.5µL of 25millimolar (mM) HEPES 7.4, 50millimolar (mM) KCl instead of PKC Alpha protein.

9.

Transfer the Eppendorf tubes to the thermo mixer set at 30°C, 1000rpm,0h 0m 0s. Incubate for 0h 45m 0s.

10.

Stop the kinase reaction by adding 10µL of 4X LDS loading buffer to the reaction mix to a final concentration of 1X.

11.

Incubate the samples for 0h 5m 0s at 70°C on a heat block before proceeding to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) section.

SDS-polyacrylamide gel electrophoresis (SDS-PAGE):

12.

Load samples onto a NuPAGE 4–12% Bis–Tris Midi Gel (ThermoFisherScientific, Cat#WG1402BOX or Cat#WG1403BOX), alongside pre-stained molecular weight markers (ranging from 10 kDa to 250 kDa). Rinse wells carefully with running buffer before loading samples.

Note
Load the complete reaction onto gels to ensure detection of proteins by Instant Blue stain.

13.

Electrophorese samples at 130V with MOPS SDS running buffer for 2h 0m 0s or until the blue dye runs off the gel.

14.

Place gel in a clean glass 15 cm dish and cover with 15mL-20mL of InstantBlue® Coomassie Protein stain. Incubate on see-saw rocker for 1h 0m 0s at Room temperature.

15.

Replace the InstantBlue® Protein stain with double distilled water and allow to de-stain at Room temperature 0h 2m 0s before proceeding with peptide digestion as described in Total Protein Digestion section.

Total Protein Digestion

16.

Using a clean scalpel, excise stained-bands corresponding to LRRK1 from gel and cut into approximately 1mm2 gel pieces.

17.

Transfer the gel pieces into a low-bind tube.

18.

De-stain gel pieces by repeated 0h 10m 0s washes in 40% (v/v) ACN in 40millimolar (mM) NH4HCO3.

Note
Wash by incubation on thermomixer set to 1200rpm,°C at Room temperature. Repeat step 18 until gel pieces are completely colorless.

19.

Reduce peptides by addition of 100µL of 5millimolar (mM) DTT in 40millimolar (mM) NH4HCO3. Incubate on thermomixer at 56°C for 0h 30m 0s, 1200rpm,0h 0m 0s.

20.

Remove the DTT solution and incubate gel pieces in 40% (v/v) ACN in 40millimolar (mM) NH4HCO3for 0h 10m 0s at Room temperature?

Note
This step allows the gel pieces to subsequently imbibe iodoacetamide (Step 21).

21.

Alkylate peptides by addition of 20millimolar (mM) iodoacetamide in 40millimolar (mM) NH4HCO3 and incubate at Room temperature for 0h 30m 0s, 1200rpm,0h 0m 0s.

Note
Samples should be kept in the dark during this step as iodoacetamide is light-sensitive.

22.

Dehydrate gel pieces by washing in 100% (v/v) ACN for 0h 10m 0s.

Note
Perform this step on thermomixer set to 1200rpm,°C at Room temperature. Repeat step 22 twice until the gel pieces appear completely dry and white.

23.

Remove supernatant using a pipette and vacuum dry gel pieces to remove any residual CAN.

24.

Add 100ng of protease in 100µL of appropriate buffer (See Table 1) to the gel pieces from step 23 and incubate 0h 10m 0s on thermomixer at 37°C, 1200rpm,0h 0m 0s.

Note
Table 1 describes the different protease combinations used for total protein digestion and the appropriate buffers for each protease.

AB
ProteaseBuffer
Trypsin + LysC50 mM TEABC
Asp-N50 mM Tris-HCl
Chymotrypsin100 mM Tris-HCl + 10 mM CaCl2

Table 1: Protease combinations used for total protein digestion and appropriate buffers for each protease.

Peptide extraction

25.

Supplement samples from step 24 with 50µL of extraction buffer (80% ACN in 0.2% Formic Acid) and incubate on thermomixer at Room temperature for 0h 10m 0s at 1200rpm,0h 0m 0s.

26.

Centrifuge samples for 0h 1m 0s at 2000x g,0h 0m 0s to pellet the gel pieces and using a pipette carefully transfer the supernatant to a new low-binding? tube.

Note
Ensure that the gel pieces are not transferred to the new tube when pipetting the supernatant.

27.

Repeat step 25 until the gel pieces appear completely dried. Each time, transfer the supernatant into the same tube (from step 26).

28.

Vacuum dry the combined supernatants (containing the digested peptides) and proceed with C18 clean-up protocol (as described in C18 stage-tip protocol section).

C18 stage-tip protocol:

29.

Note
This protocol has been adapted from This protocol has been adapted from dx.doi.org/10.17504/protocols.io.bs3tngnn

Prepare single layer of C18 stage-tip using 16-gauge syringe [FT(1].

Note
Prepare a single layer with 16-gauge needle and pass it with spray duster into the 250µL tip for 0.1µg to 5µg of peptide amount.

30.

Resuspend the vacuum dried peptides from step 28 in 80µL of Solvent A1 (0.1% (by vol) TFA in MQ-H2O).

31.

Add 80µL of 100% (by vol) ACN to the C18 stage-tip from Step 29 and centrifuge at 2000x g,0h 0m 0s for 0h 2m 0s at Room temperature. Discard flow through.

Note
This step is required to activate the C18 resin.

32.

Add 80µL Solvent A1 (0.1% (by vol) TFA (by vol) in MQ-H2O)) and centrifuge at 2000x g,0h 0m 0s for 0h 2m 0s at Room temperature. Discard flow through. Repeat this step.

Note
This step is required to equilibrate the C18 resin.

33.

Load the acidified peptide digest from Step 30 to the C18 stage-tip from step 32 and centrifuge at 1500x g,0h 0m 0s for 0h 5m 0s at Room temperature.

Note
During this step the peptides will absorb to the C18 resin.

34.

Reapply the flow through to the C18 stage-tip column and centrifuge at 1500x g,0h 0m 0s for 0h 5m 0s at Room temperature.

35.

Add 80µL of Solvent A1 (0.1% (by vol) TFA v/v) in MQ-H2O)?) to the C18 stage-tip column and centrifuge at 2000x g,0h 0m 0s for 0h 2m 0s at Room temperature. Discard flow through. Repeat again.

36.

Place the C18 stage-tip from step 35 into a new 1.5 ml low binding tube.

Note
Using new tubes is important to avoid contamination.

37.

Elute peptides from the C18 stage-tip by adding 40µL of Elution buffer (Solvent B1: 40% (by vol) acetonitrile in 0.1% (by vol) TFA) in MQ-H2O and centrifuge at 1500x g,0h 0m 0s for 0h 2m 0s.

38.

Repeat step 37.

Elute peptides from the C18 stage-tip by adding 40µL of Elution buffer (Solvent B1: 40% (by vol) acetonitrile in 0.1% (by vol) TFA) in MQ-H2O and centrifuge at 1500x g,0h 0m 0s for 0h 2m 0s.

39.

Immediately snap freeze the eluted peptides from step 38 on dry ice and vacuum dry.

40.

Perform mass spectrometry analysis of the peptides as described in LC-MS/MS analysis section.

LC-MS/MS analysis

41.

Dissolve the peptides in LC-Buffer (3% ACN (v/v) in 0.1% Formic acid (v/v)).

Note
Just 200ng of peptide digest per sample is good enough to achieve the coverage on Exploris 240 mass spectrometer. If the starting material of LRRK1 that was used for the Kinase assay is 1µg then split the sample into five aliquots of 200ng each to inject on MS. The reminder of the sample can be injected on a different mass spectrometer to get an alternative fragmentation to HCD such as EThCD on Lumos or EAD on Sciex Zeno-TOF 7600 MS platforms.

42.

Take 200ng of the peptide digest of LRRK2 in 5µL or 10µL in LC-buffer and prepare it for the Evotips loading. The Evo tips are a versatile disposable trap columns that enables <0.1% carry-over between samples.

43.

Prepare the Evotips as described in the Protocol in PMID: 33367571.

44.

Place the Evotips on EvoSep autosampler and used the 30 sample per day (30SPD) method to execute the LC method through Xcalibur interface that is inline with Orbitrap Exploris 240 mass spectrometer.

45.

EvoSep LC system injects and executes a partial elution of the sample from Evotip and loads onto the long storage loop in which the pre-formed gradient generated at the initial step. Following the loading the High-pressure pump pushes the sample into the analytical column (ReproSil-Pur C18, 1.9 µm beads by Dr Maisch. #EV1113).

46.

The following MS instrument method can be constructed for the High-resolution HCD fragmentation analysis:

ABC
InstrumentThermo Scientific Orbitrap Exploris 240
LC systemEvoSep Liquid Chromatography system30 SPD method
Method duration45 min
MS Global settings:
Infusion mode:Liquid Chromatography
Expected LC peak width (s):15
Advanced Peak determination:TRUE
Default charge state:2
Internal mass calibration:off
Full scan settings:
Orbitrap resolution:120000
Scan range (m/z):375-1500
RF lens(%):70
AGC target:Custom
Normalized AGC target (%):300
Maximum injection Time mode:Custom
Maximum injection Time (ms):25
Micorscans:1
Data type:Profile
Polarity:Positive
Filters:
MIPSMonoisotopic peak determination:Peptide
Relax restrictions when too few precursors are found:TRUE
IntensityFilter Type:Intensity Threshold
Intensity Threshold:5.00E+03
Charge StateInclude charge state(s):2 to 6
Include undetermined charge states:False
Dynamic ExclusionDynamic Exclusion Mode:Custom
Exclude after n times:1
Exclusion duration (s):5
Mass Tolerance:ppm
Low:10
High10
Exclude isotopes:TRUE
Perform dependent scan on single charge state per precursor only:FALSE
Data DependentData Dependent Mode:Number of Scans
Number of Dependent Scans10
ddMS2 settingsIsolation Window (m/z):1.2
Isolation Offset:Off
Collision Energy Mode:Fixed
Collision Energy Type:Normalized
HCD Collision Energy (%):28
Orbitrap resolution:15000
First Mass (m/z):110
Scan range mode:Auto
AGC target:Standard
Maximum injection Time mode:Custom
Maximum injection Time (ms):100
Micorscans:1
Data type:Profile
Polarity:Positive

Data analysis

47.

Transfer the raw data to search with Thermo Scientific Proteome Discoverer 2.4 Software suite that is integrated with Sequest-HT search algorithm.

Note
As the PD 2.4 software is commercial software suite, if you don’t have access to it consider in using Open-source package like MaxQuant or FragPipe.

48.

We recommend creating a custom protein sequence FASTA file rather than using the entire Uniprot Human or Mouse proteome FASTA file. For example: Copy the Human LRRK1 FASTA sequence and past it into a Notepad++ and save with LRRK1.FASTA .

Note
Ensure if you have any N-ter or C-ter GFP or HA tag of a recombinant LRRK1 and append the sequence accordingly).

49.

Import the LRRK1.FASTA sequence into the PD 2.4 software.

50.

Construct the Processing and Consensus workflows

ABC
------------------------------------------------------------------
The Processing workflow tree
------------------------------------------------------------------
(0) Spectrum Files
(1) Spectrum Selector
(2) Sequest HT
(3) Fixed Value PSM Validator
(4) IMP-ptmRS
(5) Minora Feature Detector
------------------------------------------------------------------
Processing node 0Spectrum Files
------------------------------------------------------------------
Input DataNote
File Name(s)Specify the sample condtion and the Enyzme associated with the digestion
RN-AM_211216_LRRK1_+PKC_Tryp-LysC_01.raw
RN-AM_211216_LRRK1_+PKC_Tryp-LysC_01.raw
RN-AM_211216_LRRK1_-PKC_Tryp-LysC_01.raw
RN-AM_211216_LRRK1_-PKC_Tryp-LysC_01.raw
------------------------------------------------------------------
Processing node 1Spectrum Selector
------------------------------------------------------------------
1. General Settings
Precursor SelectionUse MS1 Precursor
Use Isotope Pattern in Precursor ReevaluationTrue
Provide Profile SpectraAutomatic
2. Spectrum Properties Filter
Lower RT Limit0
Upper RT Limit0
First Scan0
Last Scan0
Lowest Charge State0
Highest Charge State0
Min. Precursor Mass350 Da
Max. Precursor Mass5000 Da
Total Intensity Threshold0
Minimum Peak Count1
3. Scan Event Filters
Mass AnalyzerIs FTMS
MS OrderIs MS2; MS1
Activation TypeIs HCD
Min. Collision Energy0
Max. Collision Energy1000
Scan TypeIs Full
Polarity ModeIs +
4. Peak Filters
- S/N Threshold (FT-only)1.5
5. Replacements for Unrecognized Properties
Unrecognized Charge ReplacementsAutomatic
Unrecognized Mass Analyzer ReplacementsFTMS
Unrecognized MS Order ReplacementsMS2
Unrecognized Activation Type ReplacementsHCD
Unrecognized Polarity Replacements+
Unrecognized MS Resolution@200 Replacements120000
Unrecognized MSn Resolution@200 Replacements30000
6. Precursor Pattern Extraction
Precursor Clipping Range Before2.5 Da
5.5 Da
------------------------------------------------------------------
Processing node 2Sequest HT
------------------------------------------------------------------
1. Input Data
Protein DatabaseLRRK1.FASTA
Enzyme NameTrypsin (Full)Here, specify AspN and Chymotrypsin separately fof the searches associated with those conditions
Max. Missed Cleavage Sites2
Min. Peptide Length7
Max. Peptide Length144
Max. Number of Peptides Reported10
2. Tolerances
Precursor Mass Tolerance10 ppm
Fragment Mass Tolerance0.05 Da
Use Average Precursor MassFalse
Use Average Fragment MassFalse
3. Spectrum Matching
Use Neutral Loss a IonsTrue
Use Neutral Loss b IonsTrue
Use Neutral Loss y IonsTrue
Use Flanking IonsTrue
Weight of a Ions0
Weight of b Ions1
- Weight of c Ions0
Weight of x Ions0
Weight of y Ions1
Weight of z Ions0
4. Dynamic Modifications
Max. Equal Modifications Per Peptide3
Max. Dynamic Modifications Per Peptide4
- 1. Dynamic ModificationOxidation / +15.995 Da (M)
- 2. Dynamic ModificationPhospho / +79.966 Da (S, T, Y)
7. Static Modifications
- 1. Static ModificationCarbamidomethyl / +57.021 Da (C)
------------------------------------------------------------------
Processing node 3Fixed Value PSM Validator
------------------------------------------------------------------
1. Input Data
Maximum Delta Cn0.05
Maximum Rank0
------------------------------------------------------------------
Processing node 4IMP-ptmRS
------------------------------------------------------------------
1. Scoring
PhosphoRS ModeTrue
Report only PTMsTrue
Use Diagnostic IonsTrue
Use Fragment Mass Tolerance of Search NodeTrue
Fragment Mass Tolerance0.5 Da
Consider Neutral Loss peaks for CID, HCD and EThcDAutomatic
Maximum Peak Depth8
Use a Mass accuracy correctionFalse
2. Performance
Maximum Number of Position Isoforms500
Maximum PTMs Per Peptide10
------------------------------------------------------------------
Processing node 5Minora Feature Detector
------------------------------------------------------------------
1. Peak & Feature Detection
Min. Trace Length5
- Max. ΔRT of Isotope Pattern Multiplets [min]0.2
2. Feature to ID Linking
PSM Confidence At LeastHigh
AB
The Consensus workflow tree
------------------------------------------------------------------
(0) MSF Files
(1) PSM Grouper
(2) Peptide Validator
(3) Peptide and Protein Filter
(4) Protein Scorer
(5) Protein Grouping
(6) Peptide in Protein Annotation
(15) Modification Sites
(7) Protein FDR Validator
(16) Peptide Isoform Grouper
(10) Feature Mapper
(11) Precursor Ions Quantifier
Post-processing nodes
--------------------------------
(12) Result Statistics
(13) Display Settings
(14) Data Distributions
------------------------------------------------------------------
Processing node 0MSF Files
------------------------------------------------------------------
1. Storage Settings
Spectra to StoreIdentified or Quantified
Feature Traces to StoreAll
2. Merging of Identified Peptide and Proteins
Merge ModeGlobally by Search Engine Type
3. FASTA Title Line Display
Reported FASTA Title LinesBest match
Title Line Rulestandard
4. PSM Filters
Maximum Delta Cn0.05
Maximum Rank0
Maximum Delta Mass0 ppm
Hidden Parameters
MSF File(s)RN-AM_211216_LRRK1_Sequest-Trypsin-(1).msf
------------------------------------------------------------------
Processing node 1PSM Grouper
------------------------------------------------------------------
1. Peptide Group Modifications
Site Probability Threshold75
------------------------------------------------------------------
Processing node 2Peptide Validator
------------------------------------------------------------------
1. General Validation Settings
Validation ModeAutomatic (Control peptide level error rate if possible)
Target FDR (Strict) for PSMs0.01
Target FDR (Relaxed) for PSMs0.05
Target FDR (Strict) for Peptides0.01
Target FDR (Relaxed) for Peptides0.05
2. Specific Validation Settings
Validation Based onq-Value
Target/Decoy Selection for PSM Level FDR Calculation Based on ScoreAutomatic
Reset Confidences for Nodes without Decoy Search (Fixed Score thresholds)False
------------------------------------------------------------------
Processing node 3Peptide and Protein Filter
------------------------------------------------------------------
1. Peptide Filters
Peptide Confidence At LeastHigh
Keep Lower Confident PSMsFalse
Minimum Peptide Length7
Remove Peptides without Protein ReferenceFalse
2. Protein Filters
Minimum Number of Peptide Sequences1
Count Only Rank 1 PeptidesFalse
Count Peptides only for Top Scored ProteinFalse
------------------------------------------------------------------
Processing node 4Protein Scorer
------------------------------------------------------------------
No parameters
------------------------------------------------------------------
Processing node 5Protein Grouping
------------------------------------------------------------------
1. Protein Grouping
Apply Strict parsimony principleTrue
------------------------------------------------------------------
Processing node 6Peptide in Protein Annotation
------------------------------------------------------------------
1. Flanking Residues
Annotate Flanking Residues of the PeptideTrue
Number Flanking Residues in Connection Tables1
2. Modifications in Peptide
Protein Modifications ReportedOnly for Master Proteins
3. Modifications in Protein
Modification Sites ReportedAll And Specific
Minimum PSM ConfidenceHigh
Report only PTMsTrue
4. Positions in Protein
Protein Positions for PeptidesOnly for Master Proteins
------------------------------------------------------------------
Processing node 15Modification Sites
------------------------------------------------------------------
1. General
Report only PTMsTrue
only Master ProteinsTrue
Motif Radius10
------------------------------------------------------------------
Processing node 7Protein FDR Validator
------------------------------------------------------------------
1. Confidence Thresholds
Target FDR (Strict)0.01
Target FDR (Relaxed)0.05
------------------------------------------------------------------
Processing node 16Peptide Isoform Grouper
------------------------------------------------------------------
No parameters
------------------------------------------------------------------
Processing node 10Feature Mapper
------------------------------------------------------------------
1. Chromatographic Alignment
Perform RT AlignmentTrue
- Maximum RT Shift [min]10
Mass Tolerance10 ppm
Parameter TuningCoarse
2. Feature Linking and Mapping
RT Tolerance [min]0
Mass Tolerance0 ppm
Min. s/N Threshold5
------------------------------------------------------------------
Processing node 11Precursor Ions Quantifier
------------------------------------------------------------------
1. General Quantification Settings
Peptides to UseUnique + Razor
Consider Protein Groups for Peptide UniquenessTrue
Use Shared Quan ResultsTrue
Reject Quan Results with Missing ChannelsFalse
2. Precursor Quantification
Precursor Abundance Based onIntensity
Min. # Replicate Features [%]0
3. Normalization and Scaling
Normalization ModeTotal Peptide Amount
Scaling ModeOn All Average
4. Exclude Peptides from Protein Quantification
for NormalizationUse All Peptides
for Protein Roll-UpUse All Peptides
for Pairwise RatiosExclude Modified
5. Quan Rollup and Hypothesis Testing
Protein Abundance CalculationSummed Abundances
N for Top N3
Protein Ratio CalculationPairwise Ratio Based
Maximum Allowed Fold Change100
Imputation ModeNone
Hypothesis Testt-test (Background Based)
6. Quan Ratio Distributions
- 1st Fold Change Threshold2
- 2nd Fold Change Threshold4
- 3rd Fold Change Threshold6
- 4th Fold Change Threshold8
- 5th Fold Change Threshold10
51.

If the database search is to be done using MaxQuant then refer below settings

AB
ParameterValue
Version2.0.3.0
User nameRNirujogi
Machine nameMRC-MS-R640-4
Date of writing05/23/2022 15:15:41
Include contaminantsTRUE
PSM FDR0.01
SM FDR Crosslink0.01
Protein FDR0.01
Site FDR0.01
Use Normalized Ratios For OccupancyTRUE
Min. peptide Length7
Min. score for unmodified peptides0
Min. score for modified peptides40
Min. delta score for unmodified peptides0
Min. delta score for modified peptides6
Min. unique peptides0
Min. razor peptides1
Min. peptides1
Use only unmodified peptides andTRUE
Modifications included in protein quantificationOxidation (M);Acetyl (Protein N-term);Deamidation (NQ)
Peptides used for protein quantificationRazor
Discard unmodified counterpart peptidesTRUE
Label min. ratio count2
Use delta scoreFALSE
iBAQFALSE
iBAQ log fitFALSE
Match between runsFALSE
Find dependent peptidesFALSE
Fasta fileC:\Raja\Database\LRRK1.FASTA
Decoy moderevert
Include contaminantsTRUE
Advanced ratiosTRUE
Fixed andromeda index folder
Combined folder location
Second peptidesTRUE
Stabilize large LFQ ratiosTRUE
Separate LFQ in parameter groupsFALSE
Require MS/MS for LFQ comparisonsTRUE
Calculate peak propertiesFALSE
Main search max. combinations200
Advanced site intensitiesTRUE
Write msScans tableFALSE
Write msmsScans tableTRUE
Write ms3Scans tableTRUE
Write allPeptides tableTRUE
Write mzRange tableTRUE
Write DIA fragments tableFALSE
Write DIA fragments quant tableFALSE
Write pasefMsmsScans tableTRUE
Write accumulatedMsmsScans tableTRUE
Max. peptide mass [Da]4600
Min. peptide length for unspecific search8
Max. peptide length for unspecific search25
Razor protein FDRTRUE
Disable MD5FALSE
Max mods in site table3
Match unidentified featuresFALSE
Epsilon score for mutations
Evaluate variant peptides separatelyTRUE
Variation modeNone
MS/MS tol. (FTMS)20 ppm
Top MS/MS peaks per Da interval. (FTMS)12
Da interval. (FTMS)100
MS/MS deisotoping (FTMS)TRUE
MS/MS deisotoping tolerance (FTMS)7
MS/MS deisotoping tolerance unit (FTMS)ppm
MS/MS higher charges (FTMS)TRUE
MS/MS water loss (FTMS)TRUE
MS/MS ammonia loss (FTMS)TRUE
MS/MS dependent losses (FTMS)TRUE
MS/MS recalibration (FTMS)FALSE
MS/MS tol. (ITMS)0.5 Da
Top MS/MS peaks per Da interval. (ITMS)8
Da interval. (ITMS)100
MS/MS deisotoping (ITMS)FALSE
MS/MS deisotoping tolerance (ITMS)0.15
MS/MS deisotoping tolerance unit (ITMS)Da
MS/MS higher charges (ITMS)TRUE
MS/MS water loss (ITMS)TRUE
MS/MS ammonia loss (ITMS)TRUE
MS/MS dependent losses (ITMS)TRUE
MS/MS recalibration (ITMS)FALSE
MS/MS tol. (TOF)40 ppm
Top MS/MS peaks per Da interval. (TOF)10
Da interval. (TOF)100
MS/MS deisotoping (TOF)TRUE
MS/MS deisotoping tolerance (TOF)0.01
MS/MS deisotoping tolerance unit (TOF)Da
MS/MS higher charges (TOF)TRUE
MS/MS water loss (TOF)TRUE
MS/MS ammonia loss (TOF)TRUE
MS/MS dependent losses (TOF)TRUE
MS/MS recalibration (TOF)FALSE
MS/MS tol. (Unknown)20 ppm
Top MS/MS peaks per Da interval. (Unknown)12
Da interval. (Unknown)100
MS/MS deisotoping (Unknown)TRUE
MS/MS deisotoping tolerance (Unknown)7
MS/MS deisotoping tolerance unit (Unknown)ppm
MS/MS higher charges (Unknown)TRUE
MS/MS water loss (Unknown)TRUE
MS/MS ammonia loss (Unknown)TRUE
MS/MS dependent losses (Unknown)TRUE
MS/MS recalibration (Unknown)FALSE
Site tablesDeamidation (NQ)Sites.txt;Oxidation (M)Sites.txt;Phospho (ST)Sites.txt

Data analysis and Visualization

52.

Manually verify the MS/MS spectrum and phosphorylation localization score within PD2.4.

53.

Now export the filtered Phosphosites from modifications table for each of the sample/category

54.

Use the below scripts for parsing and combining the data to generate a heatmap representation.

Note
The below script can also be accessed from the Alessi lab gihub web page: https://github.com/Alessi-Lab/LRRK1_phosphosites)

The script below would first read phosphosite mapping result, then map them on to the original protein amino acid sequence through combining PeptideGroups and ModificationSites result text file. The data would be filtered by probability greater or equal to 75 and grouped by the different tryptic digestion enzymes used. Only entries with the highest abundance values according to the unique motif, position and sample condition are kept. Then based on the sequence length, the data was divided into instances of 500 amino acid continuous span on the protein sequence. Each of these instances would be used to create a heatmap where the abundance of the peptide would be the heatmap color, the sample condition would be presented on the X-axis while the position of the phosphosites are represented in the Y-axis in ascending order.

import numpy as np
import pandas as pd
from glob import glob
import re
import seaborn as sns
import matplotlib.pylab as plt
if __name__ == "__main__":
proteases = ["AspN", "Chymotrypsin",
#"Trypsin"
]
files = ["PeptideGroups", "ModificationSites"]
phospho_re = re.compile(r"Phospho [S(\d+)\((\d+)\)]")
results = {}
for i in glob(r"\\mrc-smb.lifesci.dundee.ac.uk\mrc-group-folder\ALESSI\Toan\TS22D4_Phosphosite mapping_02\*.txt"):
for p in proteases:
if p in i:
for f in files:
if f in i:
if p not in results:
results[p] = {}
results[p][f] = pd.read_csv(i, sep="\t")
break
break
merged_df = []
columns = set()
for p in proteases:
pg = results[p][files[0]]
ms = results[p][files[1]]
for i, r in pg.iterrows():
pg.at[i, "Primary IDs"] = ";".join([r["Master Protein Accessions"], r["Annotated Sequence"][4:len(r["Annotated Sequence"])-4]])
phos = []
s = re.search("\[(\d+)-(\d+)\]", r["Positions in Master Proteins"])

pos = []
if s:
pg.at[i, "Start"] = s.group(1)
mod_count = r["Modifications"].count("]; ")
if mod_count > 0:
for m in r["Modifications"].split("]; "):
if "Phospho" in m:
s = re.search("\[(.+)", m)
if s:
for si in s.group(1).split("; "):
sire = re.search("(\w)(\d+)\(", si)
if sire:
phos.append("".join([sire.group(1), sire.group(2)]))
pos.append(str(int(sire.group(2)) + int(pg.at[i, "Start"]) - 1))
else:
if "Phospho" in r["Modifications"]:
s = re.search("\[(.+)", r["Modifications"])
if s:
for si in s.group(1).split("; "):
sire = re.search("(\w)(\d+)\(", si)
if sire:
phos.append("".join([sire.group(1), sire.group(2)]))
pos.append(str(int(sire.group(2)) + int(pg.at[i, "Start"]) - 1))
pg.at[i, "Position"] = pos
pg.at[i, "Phospho"] = phos

pg = pg.explode(["Phospho", "Position"])
pg = pg[pd.notnull(pg["Phospho"])]
pg["Position"] = pg["Position"].astype(int)
for i, r in ms.iterrows():
ms.at[i, "Primary IDs"] = ";".join([r["Protein Accession"], r["Peptide Sequence"]])
rpg = pg[[i for i in pg.columns if i.startswith("Abundance")] + ["Primary IDs", "Phospho", "Position", "Modifications"]]
rename = {}
for i in rpg.columns:
if "Abundance" in i:
rename[i] = re.sub("Abundance: F\d+: Sample, ", "", i)
columns.add(rename[i])
print(rpg["Primary IDs"])
print(ms["Primary IDs"])
rpg = rpg.rename(columns=rename)
ms["Phospho"] = ms["Target Amino Acid"] + ms["Position in Peptide"].astype(str)
ms["Enzymes"] = p
df = ms.merge(rpg, left_on=["Primary IDs", "Phospho"], right_on=["Primary IDs", "Phospho"])
merged_df.append(df)

merged_df = pd.concat(merged_df, ignore_index=True)
merged_df = merged_df[merged_df["Site Probability"]>=75]
result = pd.melt(merged_df, id_vars=[
"Phospho", "Position_y", "Enzymes", "Motif"], value_vars=list(columns),
var_name="Samples", value_name="Abundance")

a = result.groupby([
#"Phospho",
"Position_y", "Samples", "Enzymes", "Motif"]).max()

a.reset_index(inplace=True)
print(a["Samples"])
a["Conditions"], a["Replicates"] = a["Samples"].str.split("Rep-", expand=True)
for i, g in a.groupby([
# "Phospho",
"Position_y", "Motif"]):
remove_motif = True
for i2, g2 in g.groupby(["Enzymes", "Conditions"]):
if len(g2[pd.notnull(g2["Abundance"])].index) > 1:
remove_motif = False
break
if remove_motif:
a["Motif"].loc[g.index] = ""

a.sort_values("Position_y", inplace=True)
e = 1
n = 500
samples = a["Samples"].unique()
samples_columns = []
for p in proteases:
for s in samples:
samples_columns.append((p, s))
multiindex = pd.MultiIndex.from_tuples(samples_columns, names=["Enzymes", "Samples"])
while n:

c = a[(a["Position_y"] <= n)&(a["Position_y"] > (n-500))]
fontsize_pt = plt.rcParams['ytick.labelsize']
dpi = 72.27
top_margin = 0.2
bottom_margin = 0.2
left_margin = 0.2
right_margin = 0.2
figure_height = (len(c.index)/10) / (1 - top_margin - bottom_margin)
figure_width = 10 / (1-left_margin-right_margin)
c = c.set_index([
#"Phospho",
"Position_y", "Samples", "Enzymes", "Motif"])
c = c.unstack("Enzymes")

b = pd.pivot_table(c, values="Abundance", columns="Samples", index=["Position_y",
#"Phospho",
"Motif"])
b.fillna(0, inplace=True)
b = b.T

for i in b.columns:
b0 = b[i][b[i]==0]
b[i] = (np.log2(b[i], where=b[i]>0) - np.log2(b[i], where=b[i]>0).mean()) / np.log2(b[i], where=b[i]>0).std(ddof=1)
for ind in b0.index:
b[i].loc[ind] = np.nan
b = b.T
new_df = pd.DataFrame(index=b.index, columns=multiindex)
for i in new_df.columns:
if i in b.columns:
new_df[i] = b[i]
else:
new_df[i].fillna(0, inplace=True)

new_df.to_csv(f"merged{n}.csv")
fig, ax = plt.subplots(
figsize=(figure_width, figure_height),
gridspec_kw=dict(top=1-top_margin, bottom=bottom_margin, left=left_margin, right=1-right_margin)
)
mask = np.isnan(b)
sns.heatmap(new_df, cmap="YlGnBu", mask=mask, square=True, ax=ax)
ax.set_facecolor("silver")
ax.xaxis.tick_top()
ax.xaxis.set_label_position('top')
for label in ax.get_yticklabels():
label.set_weight("bold")
for label in ax.get_xticklabels():
label.set_weight("bold")
plt.xticks(rotation=90)
plt.savefig(f"result{n}.pdf")
for i, r in b.iterrows():
if i[1] != "":
p = re.compile(r"[RK]\w[ts]\w\w[RK]")
s = re.search(p, i[1])
if s:
print(i)
n += 500
e += 1
if n >= a["Position_y"].max():
break

推荐阅读

Nature Protocols
Protocols IO
Current Protocols
扫码咨询